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Abstract

This is a followup to our earlier paper, which showed that when birthdays in a group of people
are suitably positively correlated, it is more likely that there will be a birthday in common than when
birthdays are independent.

1 Introduction

Let X1, X2, . . . , XN be identically distributed random variables defined on a common probability space, and
taking values in some finite set S. Let Y1, Y2, . . . , YN be independent variables with the same marginal
distributions as the X variables. In what follows, we shall say that the birthday inequality holds when

P (X1, X2, . . . , XN are distinct) ≤ P (Y1, Y2, . . . , YN are distinct)

The example motivating the terminology arises when S represents the days of the calendar year and
the Xi represent birthdays of people in a group of size N . The famous Birthday “Paradox” is based on
the fact that the quantity on the right side is unexpectedly small for seemingly modestly large values of N ,
and our earlier work considered the extent to which the paradox perists, or is enhanced, when birthdays are
suitably positively correlated. In particular, we considered association, a strong notion of positive correlation
introduced in [1]. To our surprise, it is possible for associated sets of birthdays to be less likely to have some
matching pair than independent ones. We then introduced an even stronger notion of positive correlation
that is sufficient for the birthday inequality to hold.

2 Affiliated Random Variables

Given a collection X1, . . . , XN of random variables defined on a common probability space, we denote by Fî

the sigma field generated by all variables except Xi. We say the collection is affiliated if and only if, for any
subset A of S and index i, we have

(2.1) P (Xi ∈ A|Fî) ≥ P (Xi ∈ A) on the event
⋂
j 6=i

{Xj ∈ A},

and also for subcollections.
Stated informally, the variables “want” to belong to sets the other variables belong to.

3 Examples

The following example shows that the birthday inequality may fail when variables are identically distributed
and associated. ([2] had an example with variables that are not identically distributed.) It also provides an
interesting example of an affiliated pair.
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The joint distribution of (X,Y ) is given by the following table, where for now we only assume p is chosen
so that 0 < p < 1 :

X/Y -1 0 1

-1 p
4

1−p
4 0

0 1−p
4

p
2

1−p
4

1 0 1−p
4

p
4

This distribution may be obtained as that of the position of a random walk after 2 steps when the x and
y components perform simple symmetric random walk with step size 1

2 . The components are coupled by
making the first steps equal, and the second steps equal with probability p.

The pair (X,Y ) is associated when 1
3 ≤ p, affiliated when 1

2 ≤ p, and the birthday inequality fails when
p < 3

8 . For the last statement, let U and V be independent variables with the same distribution as X
(or Y .) Then P (U = V ) = 3

8 . On the other hand, summing the diagonal entries of the table gives that
P (X = Y ) = p. Thus, when p < 3

8 , the independent variables have a larger chance of being equal than the
dependent (positively correlated) ones, and in the range 1

3 ≤ p <
3
8 one has an example where the birthday

inequality is violated by identically distributed associated variables.
The labor in showing that (X,Y ) is associated (or not) is eased by using Theorem 4.3 of [1]: To show

the pair is associated, it suffices to show that for every value of t, the function g(s) = P (X > t|Y = s) is
non-decreasing. It is sufficient, of course, to consider two cases: t = −1 and t = 0. Other cases are automatic

or follow from these. For t = −1 one computes, e.g., that g(0) = P (X ∈ {0, 1}|Y = 0) = 1/4+p/4
1/2 = 1/2+p/2.

Similarly, g(−1) = 1− p, and g(1) = 1. Thus, g is non-decreasing if and only if 1
3 ≤ p. When t = 0, the only

possible value of X is 1, and we find that g(−1) = 0, g(0) = 1−p
2 , g(1) = p. This is also non-decreasing if and

only if 1
3 ≤ p, establishing the claim.

For the statement about affiliation, note that (2.1) is automatic for any set containing {−1, 0, 1} or disjoint
from it. By symmetry, then, there are only 4 cases that need be tested for the choice of A: {0}, {1}, {0, 1},
and {−1, 1}. We have P (X = 0|Y = 0) = p, P (X = 1|Y = 1) = p. Also, P (X ∈ {0, 1}|Y = 0) = p

2 + 1
2 , P (X ∈

{0, 1}|Y = 1) = 1. Finally, P (X ∈ {−1, 1}|Y = 1) = p. The result in every case exceeds the unconditional
probability if and only if p ≥ 1

2 .
We turn to an example that shows one method for constructing a new affiliated set Y1, Y2, . . . , Yn from

a given one, X1, X2, . . . , Xn: pick an ordered pair (j, k) of distinct indices and define Yj = Xk, and Yi = Xi

for i 6= j. If i 6= j, k, then (2.1) holds for the Y ′s since the computation can be done as if we had simply
dropped Xj from the original collection. On the other hand, if i = j then

P (Yi ∈ A|Fî) = 1{Xk∈A} = 1

on the event
⋂

j 6=i{Yj ∈ A}. The same holds when i = k.
It might seem that we could make the selection of a pair of indices at random, as long as it is done

independently of all the X ′s, but this is not true. To see a very simple example of what can go wrong,
suppose we start with a triple (X,Y, Z), where the pair X,Y is i.i.d Bernoulli (taking the values 0 and 1
with equal probability) and Z is the non-random constant equal to 2. This triple is affiliated. Now toss a
fair coin and make X = Z if it is heads, and Y = Z if it is tails. The new triple is not affiliated because the
subcollection (U, V ) consisting of the first two variables is not. Its joint distribution is:

U/V 0 1 2
0 0 0 1

4
1 0 0 1

4
2 1

4
1
4 0

We have P (U = 0|V = 0) = 0, while P (U = 0) = 1
4 . This example also shows that mixtures of affiliated

sequences are not necessarily affiliated.
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We turn now to a family of examples which allow for any number of variables X1, . . . , XN taking values
in any finite set S. There is no harm in assuming S is just the first n natural numbers. Denote by x an
N -tuple of elements of S, i.e., an element of the Cartesian product SN . We will assign a probability p(x) that
is independent of the order of the components of x, that is, if y is obtained by permuting the components
of x, then p(y) = p(x).

To be more precise, given any partition N = d1 + d2 + · · · + dk of N with k parts arranged in non-
increasing order, we shall say that an N -tuple x has type [d1, d2, . . . , dk] if it has sets of d1, d2, . . . , dk equal
components, with distinct common values for each set. Thus, for example, the 10-tuple 5, 3, 1, 5, 3, 6, 6, 2, 2, 3
has type [3, 2, 2, 2, 1]. Order the set T of all possible types lexicographically, so that, e.g., the listed example is
larger than any containing only ones and twos, and smaller than any example containing a 4 or higher digit.
Explicitly, we have [c1, c2, . . . , cm] < [d1, d2, . . . , dn] if and only if, for some j we have c1 = d1, . . . , cj−1 =
dj−1, cj < dj . We denote the type of a given N -tuple x by [x].

We will need below the following simple observation about lexicographic order. Suppose c ≥ c′ represent
the counts of some pair of distinct digits in a sequence x, and d ≥ d′ the same counts in another sequence
y. If [c, c′] ≥ [d, d′], and the counts of all other digits are equal, then [x] ≥ [y].

Let f : T → R+ be non-zero and non-decreasing relative to the order of T , and finally define p(x) =
f([x])/c, with normalizing constant c chosen so that this defines a probability on SN .

Let Xi be the usual i-th coordinate function on SN , and we shall show that X1, X2, . . . , XN is affiliated.
In addition, the Xi are exchangeable, since the type of a sequence is unchanged by permuting its terms; and
the marginal distribution of each Xi is uniform on S, since the distribution is unchanged by permutations
of elements of S.

In what follows, we indicate individual elements of S by lower case letters, and sequences of elements
with boldface. Sequences are joined by concatenating their letters. We denote by y(x) the number of times
y occurs in x.

Lemma 3.1. If x is a sequence of elements of S of length k < N and u(x) = 0, then∑
y

f([uxy]) ≤
∑
y

f([vxy]),

where the sum extends over all possible sequences of length N − k − 1.

Before beginning the proof, it should be noted that inequality does not in general hold between corre-
sponding terms of the sums. For example, with N = 4, if x = v and y = uu then [uvuu] = [3, 1] > [2, 2] =
[vvuu].

Turning to the proof, we may suppose u 6= v. Let a = v(x), b = u(y). If b < a, then the frequency of u
does not determine the order position of the term belonging to y on either side, and then we clearly have
the term-wise inequality f([uxy]) ≤ f([vxy]). This same inequality must also hold if a = b: uxy contains
exactly 1 + a u’s and a+ v(y) v’s, while vxy has a u’s and 1 + a+ v(y) v’s. The counts of all other elements
are the same, so the inequality follows from the property of lexicographic order noted above. Thus we may
restrict the summation to the set B of y such that b > a. Assuming such a sequence y, we can determine
a sequence z up to permutation by the equation [y] = [uaz], where ua denotes u repeated a times, together
with the requirement that y and uaz be permutations of each other. Let z∗ be the sequence obtained from
z by changing every u to a v and vice versa.

To complete the proof, it suffices to show that

f([uxuaz]) + f([uxuaz∗]) ≤ f([vxuaz]) + f([vxuaz∗]),

since the sum over B may be written as the sum of such terms with z 6= z∗, plus half the sum of such terms
with z = z∗.

To see this, let c = u(z) and d = v(z). The following ordered pairs then give for each of the 4 terms,
(α, β), where α is the frequency of u and β is the frequency of v in the sequence occurring in the given terms
(all elements other than u and v occur with equal frequencies in all 4 sequences):

(a+ c+ 1, a+ d), (a+ d+ 1, a+ c), (a+ c, a+ d+ 1), (a+ d, a+ c+ 1).

3



If c > d, then inspection of these ordered pairs shows that no term can exceed the last term, and the third
term is equal to the second; while if d > c then no term can exceed the third, and the fourth is equal to the
first. If c = d, then all 4 terms are equal.

To show that X1, . . . , XN is affiliated, i.e. that (2.1) holds for a given sub-collection of size k, it suffices,
since the variables are exchangeable, to show that

(3.1) P (X1 ∈ A|X2 . . . Xk = x) ≥ P (X1 ∈ A)

holds for any x having no component outside of A. Replacing A temporarily by an arbitrary element v of
A, and multiplying by P (X2 . . . Xk = x), the left side of (3.1) becomes∑

y

p(vxy) =
1

c

∑
y

f([vxy]).

Let u be any element not belonging to A. Then by Lemma 3.1 we have,∑
y

p(uxy) ≤ 1

c

∑
y

f([vxy]).

Summing over u and then v we obtain,

|A|P (X1 /∈ A|X2 . . . Xk = x)P (X2 . . . Xk = x) ≤ (n− |A|)
∑
y

P (X1 ∈ A|X2 . . . Xk = x)P (X2 . . . Xk = x),

where |A| is the cardinality of A. From this, it follows by rearrangement that

P (X1 ∈ A|X2 . . . Xk = x) ≥ |A|
n

= P (X1 ∈ A).

4 Discussion

We showed in [2] that if a pair of S valued random variables is associated under every total ordering of
S, then it is affiliated. The argument shows that for larger collections X1, X2, . . . , Xn associated under
every total order of S, if A is any subset of S, then P (Xi ∈ A|Xj ∈ A, j 6= i) ≥ P (Xi ∈ A), and also for
sub-collections. This is weaker than affiliation since the conditioning event is not necessarily an atom of the
sigma field generated by the variables involved. One also has a partial converse: If the collection is affiliated,
then under any ordering of S we have the probability inequality

(4.1) P (X1 > c1, X2 > c2, . . . , Xn > cn) ≥ P (X1 > c1)P (X2 > c2) . . . P (Xn > cn),

and also for sub-collections. By relabeling the variables if necessary, we may assume that the ci are non-
increasing in i. Let A = {x ∈ S : x > cn}. Then {X1 > c1, X2 > c2, . . . Xn−1 > cn−1} ⊆ {Xj ∈ A, j 6= n}.
Then

P (X1 > c1, X2 > c2, . . . , Xn > cn) = E(P (Xn > cn|Fn̂), X1 > c1, . . . Xn−1 > cn−1),

and, by affiliation,

E(P (Xn > cn|Fn̂), X1 > c1, . . . Xn−1 > cn−1) ≥ P (X1 > c1)P (X1 > c1, X2 > c2, . . . , Xn−1 > cn−1).

We may repeat the argument to establish (4.1), which is a weaker form of association, as noted in [1].
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