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Abstract

We revisit the pseudo-random sequence introduced by Ehrenfeucht
and Mycielski and its connections with DeBruijn strings.

1 Introduction

DeBruijn strings of order n are finite strings of binary digits of minimal length
that contain as substrings all 2n possible binary strings of length n. Since the
addition of a single binary digit can produce at most one new substring of length
n, it is easy to see that a DeBruijn string must have length at least 2n+n−1. It
is remarkable that this minimum is achieved - it is possible to pack the greatest
possible variety of binary strings of given length into the minimum possible
space.

For example, the string 0011101000 is a DeBruijn string of order 3, and
the string 1111011001010000111 is a DeBruijn string of order 4. It follows from
classical work of DeBruijn that there are exactly 22

n−1

distinct DeBruijn strings
of order n. (See, e.g., p. 136 of [4].) The would-be DeBruijn-string enthusiast
can do no better than to begin with the excellent survey [3] of Fredrickson.

Here is a simple procedure to generate an example of a DeBruijn string of
any desired order n: begin with an n-string that is all zeros except for a final 1.
At each subsequent stage the next digit is a 1 unless that would cause a repeat
of the terminal n-string. Otherwise, it is a zero. Continuing in this way will
always produce a DeBruijn string that ends with n zeros. (For a proof, see, e.g.,
pages 4-6 of [7], where the algorithm was naively presented as new. In fact, as
noted in [3], the algorithm is very well-known, often rediscovered, and goes back
at least to 1934. It is known in the literature as the ‘prefer-one algorithm’.)

The Ehrenfeucht-Mycielski (hereafter EM) sequence is an infinite binary
sequence with pseudo-random properties first introduced in [1]. The sequence
begins 010, and thereafter each additional digit is generated by an algorithm that
attempts strenuously to avoid repetition. The precise algorithm is as follows:
Find the longest suffix of the sequence generated so far that occurred at least
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once previously. The next digit is then the opposite of the one that followed
the penultimate occurrence of that suffix. Thus, the first 15 digits of EM are
010011010111000. It is easy to program a computer to calculate long prefixes
of EM. For example, the first million digits are available at [2].

Since its introduction in 1992, the properties of EM have been studied by
several authors. See, e.g., [7],[9],[6], and [5]. It is sequence number A007061 in
the Sloane On-line Sequence Encyclopedia [8].

The EM and prefer-one algorithms are similar in that both seek to avoid
repetition. The main goal of this paper is to explore connections between the EM
sequence and DeBruijn strings. For example, we show in section 3 below that if
the comparison of binary strings in the EM algorithm is done in a finite buffer
of fixed length n, then the resulting sequence will eventually become periodic,
and that the repeating unit is a DeBruijn string of order n + 1. This leads
to a simple-minded and efficient algorithm for generating all possible DeBruijn
strings of a given order. The algorithm may be new, albeit rather closely related
to ALGORITHM 1 of [3].

We also consider seeded variations of EM, and show, in particular, that the
sequence uniquely determines the seed.

DeBruijn strings have many connections to other fields, including graph
theory, coding theory, and shift-register sequences. For example, a DeBruijn
string may be viewed as a Hamiltonian circuit of the DeBruijn graph of the same
order. (See the following section for the relevant definitions.) If the edges of such
a circuit are removed from the graph, the remaining graph always has a least 3
connected components, including simple loops on the vertices corresponding to
the all-zero and the all-one string. In cases where there is only a single remaining
(long loop) component, we term the original DeBruijn string a double helix. In
the last section of the paper we show that double helices of all orders exist, and
consider what happens when a double helix is used as seed for the EM sequence.

2 Terminology and Notation

The subject matter of this paper lies at the intersection of several fields, in-
cluding Computer Science and parts of Mathematics that study combinatorics
of words and free monoids. Accordingly, there is a variety of notation and ter-
minology in common use. For example, we prefer the word ‘string’ to ‘binary
sequence’ or ‘binary word’, and will use it in the rest of the paper. Similarly, we
prefer to use ‘tail’ in place of ‘suffix’, and ‘head’ in place of ‘prefix’. We consider
only strings over the alphabet {0, 1}. It is likely some results can be generalized
to larger alphabets, but we have not pursued this.

We shall use either small Greek letters for strings, or else capital Roman
ones. The distinction is that Greek letters will be for ‘short’ strings, and the
others for ‘long’ ones. String concatenation is indicated by juxtaposition of sym-
bols. Individual binary digits will be denoted by x, y, z, etc. A prime indicates
complementary binary digit, i.e., if x = 0, then x′ = 1, and vice versa. The set
of all binary strings is denoted Σ.
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We denote by σ− the head, and by −σ the tail, of the string σ. More
precisely, if σ = xτy for some string τ and digits x and y, then σ− = xτ , and

−σ = τy. The length of σ is |σ|. If σ is a string of length at least n, then σn
shall denote the head of σ of length n. The symbols 0̄n and 1̄n indicate strings
of length n comprised of all 0s and all 1s respectively.

It will be convenient to use a few terms from [7] in connection with the EM
sequence. Given an initial string of EM, the longest tail σ having an earlier
occurrence will be called the match string, and |σ| will be called the match
length.

The DeBruijn graph of order n is the directed graph Bn whose vertices are
labeled by each of the possible binary strings of length n. If σ = xτ labels a
given vertex, then there is an edge connecting from that vertex to each of the
vertices labeled τ0 and τ1. There are no other edges than these. A given non-
empty binary string X of length at least n induces a path on Bn by starting at
the vertex labeled with the initial n-string of X, and following with the vertices
labeled by each successive substring of X of length n.

The graph Bn+1 is, in a natural way, the dual graph of Bn: Each edge
xτ → τy of Bn is made to correspond with vertex xτy of Bn+1. There is an
edge in Bn+1 between vertices corresponding to two given edges of Bn, if and
only if the latter edges meet at a common vertex. Under this correspondence, a
given DeBruijn string X of order n+ 1 induces (i) a Hamiltonian path in Bn+1;
and (ii), an Eulerian path in Bn. (In the first case, every vertex is visited exactly
once; and, in the second case, every edge is crossed exactly once.)

3 EM-variants and DeBruijn Sequences

In this section we study certain variants of the EM sequence. First, let us
modify the notion of string equality used in the definition of the EM sequence
by interposing a transformation. Consider a function h : Σ → Σ which maps
the empty string to the empty string. We shall deem two strings τ and σ to
be h-equivalent if h(τ) = h(σ). The EM sequence based on h, denoted EMh, is
the binary sequence x1x2 . . . defined by x0 = 0, and then as follows to define
xn+1 for n ≥ 0 : Let σ be the longest1 tail of x1 . . . xn for which there is at least
one τ ∈ x1 . . . xn−1 that is h-equivalent to σ. Then xn+1 = y′, where y is the
follower of the latest such τ.

We also consider sequences with a given nonempty seed string, Z. One defines
the binary sequence EMh(Z) by pre-pending Z to the strings x1 . . . xn and
x1 . . . xn−1 used in the definition of EMh above. If Z is nonempty then x1 is
determined by the same rule as is used for the later terms. (Note that EMh(Z)
does not include the seed.)

If the function h is one-one then EMh coincides with the usual Ehrenfeucht-
Mycielski sequence, so we confine our attention to functions that are not one-
one. A natural class of examples to consider are ones that model testing for

1This tail may be empty, in which case the latest previous occurrence is understood to be
just before xn.
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string equality in a buffer of fixed finite length. This is, of course, the case
in practise when a digital computer with finite memory is used to generate an
initial segment of the EM sequence. Thus, given a fixed n ≥ 1, define the
sequence EMn(Z) (EMn if the seed is empty) by using for h the function

h(σ) =

{
σ, |σ| ≤ n
σn, otherwise.

(3.1)

The sequence EMn(Z) is identical to EM(Z) until the match length first
exceeds n. Computer experiments show that this initial section is followed by
a chaotic stretch of seemingly indeterminate length, after which the sequence
becomes periodic. The repeating section is a DeBruijn string of order n+ 1, as
we show below.

Proposition 3.1 For n ≥ 2 a DeBruijn string X of order n contains every
string of length n − 1 with opposite followers. All but the initial and terminal
strings (which must be equal) occur exactly twice. The initial string occurs 3
times.

Proof: Let τ be a string of length n − 1. Since both τ0 and τ1 occur in X,
τ must occur at least twice. Suppose there where a third occurrence. Then τ
must be the initial string of X to avoid a repetition of either 0τ or 1τ. But τ
must also be the terminal string of X in order to avoid a repetition of either τ0
or τ1. �

If a DeBruijn string Z of order n begins with an n-string σ, then it ends
with σ−. This follows from Proposition 3.1. Closely related to DeBruijn strings
are DeBruijn cycles. Drop the final σ− of Z and view the resulting string as a
cycle of length 2n that begins afresh with the beginning σ after 2n terms. The
literature on DeBruijn cycles is somewhat confusing since they have been called
various things. For example, such cycles are called full cycles in [3].

If each of the 2n cyclic permutations of a DeBruijn cycle is extended to
a DeBruijn string in the obvious way, then 2n distinct DeBruijn strings are
obtained, one for each possible initial σ. It was originally proved by DeBruijn
(see, e.g., p. 136 of [4]) that there are exactly 22

n−1−n distinct DeBruijn cycles.

Thus, there are exactly 22
n−1

possible DeBruijn strings for a given n. (For
n = 4, strings yielding 8 distinct DeBruijn cycles are listed on p. 135 of [4].
These, together with their bitwise complements, comprise all 16 DeBruijn cycles
of order 4. )

For any given seed string Z, the sequence EMn(Z) can be generated by a
finite state machine, and therefore it must eventually become periodic. Thus,
unlike EM(Z), the EMn(Z) are not transitive.2 On the other hand, they do
contain all possible strings of length n+ 1:

Proposition 3.2 Every string of length n + 1 occurs infinitely many times in
EMn(Z).

2An infinite string is called transitive if it contains every possible string of finite length as
a substring.
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Proof: It is easy to see that EMn(Z) cannot eventually become constant,
and therefore both binary digits occur infinitely many times. On the other hand,
since EMn(Z) is ultimately periodic, there are sufficiently long strings that do
not occur at all. Thus there is a shortest length string, τ say, that occurs
at most finitely many times. Clearly |τ | ≥ 2. Thus τ− is a nonempty string
occurring infinitely many times. Suppose |τ−| ≤ n. Then by the ‘pigeonhole
principle’ there is some string ν (possibly empty) such that |ντ−| = n and ντ−
occurs infinitely many times. But the formation rule for EMn(Z) then yields
infinitely many occurrences of both τ−0 and τ−1. In particular, τ itself occurs
infinitely many times, contrary to assumption. Thus it must be the case that
|τ−| ≥ n+ 1. �

Proposition 3.3 Let X be a DeBruijn string of order n+1 with initial n-string
σ, say X = σY σ. Then EMn(X) = Y σY σ . . . .

This is an easy consequence of Proposition 3.1.

Theorem 3.1 For any key Z, EMn(Z) will eventually produce a DeBruijn
string of order n + 1. After that, the sequence will repeat as if the DeBruijn
string had been the key.

Proof: Let τ be a string of length n+ 1. We shall say that a natural number
p is a period of τ if there are infinitely many non-overlapping substrings X
of EMn(Z) with |X| = p, and that begin and end with τ with no other τ in
between. Since EMn(Z) is ultimately periodic, we may choose and fix a string τ
having a maximum possible period. Let W denote the (infinite) tail of EMn(Z)
that begins at the earlier of the two occurrences of τ in one such X.

Let σ be a string of length n + 1 occurring in W such that the substring
extending from the first occurrence of σ to the second is as short as possible. If
more than one string contends for this distinction, choose the earliest occurring
one in W.

We shall argue now that σ = τ , in particular, σ is the initial string of W. Note
that there must be a distinct instance of σ− between σ and its next occurrence.
In other words W must contain

σ . . . xσ− . . . σ

for some binary digit x. (As in [7], we understand in this and similar diagrams
that the indicated substrings are distinct and occur in the indicated order, but
that overlap may occur.) If the predecessors of the two σs were the same, then
the first one would have to be the initial string of W, since σ was chosen to
occur as early as possible in W. Thus we may assume the two σs have opposite
predecessors. In that case, one of the two predecessors must be x. If it were the
predecessor of the second σ then the substring xσ− . . . xσ− would be shorter
than σ . . . σ, contrary to assumption. Thus x must match the predecessor of the
first σ. But in that case we reach a similar contradiction unless the first σ were
the initial string of W.
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By the forgoing, every string of length n+ 1 that occurs in W must recur at
equally spaced intervals, and that spacing is the same as for σ, the initial string
of W. Thus W = σ−Y σ−Y . . . for some string Y. Let X = σ−Y σ−. Let µ be
any given string of length n + 1. By Proposition 3.2, some instance of µ must
begin in σ−Y. Thus, µ is a substring of X. It follows that X contains every given
string of length n+ 1 exactly once, and it is therefore a DeBruijn string. �

The previous result is impractical for generating DeBruijn sequences from
an arbitrary seed since it gives no upper bound on the number of steps required.
On the other hand, it is easy to produce seed strings Z for which EMn(Z) is
immediately periodic.

Theorem 3.2 Let Z be any string ending in n zeros that contains every n-
string at least once. Then the initial 2n+1-string of EMn(Z), together with the
n zeros at the end of Z, is a DeBruijn string of order n+ 1.

Proof: [3] presents an algorithm that produces an Eulerian circuit of Bn from
a directed tree in Bn rooted at 0̄n.(The corresponding Hamilitonian circuit of
Bn+1 is then a DeBruijn string of order n+ 1.) Consider the subgraph, T , of Bn
formed by connecting the vertex of an n-string σ to the vertex of the n-string
that follows the last occurrence of σ in Z. It is obvious that every n-string can be
connected to 0̄n: just follow along Z and jump to the last occurrence whenever
necessary. Thus T is a tree rooted at 0̄n. Now apply ALGORITHM 1 on page
200 of [3]. (One must replace the n in [3] with n + 1.) It is only necessary to
note that the steps of the algorithm are identical with those of EMn(Z). �

With a slight modification, the algorithm can be adapted to handle arbitrary
seeds: Start with 0̄n. Every time an n-string tail is encountered that does not
appear in the seed, pre-pend it to the beginning of the seed and continue as if
the new longer seed had been the one given. The algorithm is very fast, and is
simple enough to use by hand. For example, with n = 3 and an empty seed, it
produces the order 4 DeBruijn string 0001111010110010000. (In the course of
the algorithm, the original empty seed turns into 111011001000.)

We return now to the study of the usual EM sequence (i.e., with h equal
to the identity function,) but with a nonempty seed string Z. The resulting
sequences EM(Z) share some of the important features of the usual EM sequence.
For example, we have

Proposition 3.4 Let m0 be the length of the longest string that recurs in Z.
Let σ be the match string of EM(Z) at time n. If |σ| > m0 and the match length
mn reaches a new record value at time n + 1, i.e., mn+1 > mk, k = 1, 2, . . . , n,
then σ is a head of ZEM(Z).

The proof is essentially the same as that of Proposition 4.1 of [7].
Let Tn be the first time the match length reaches n. Then we have

Tn ≤ 2n + n− |Z| < 2n+1 − |Z|, n > m0. (3.2)
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To see this, note that if Tn > k then the finite string ZEM(Z)k contains no
repeated strings of length n. Thus k+|Z|−n+1 ≤ 2n and the desired inequality
follows by taking k = Tn − 1.

Like EM, the strings EM(Z) are always transitive. Let Cn be the cover time
of strings of length n, i.e., the smallest k for which every string of length n is a
substring of EM(Z)k. We shall show EM(Z) is transitive by obtaining a crude
upper bound for the Cn. For a given positive constant C, define a function f on
the natural numbers inductively by setting f(1) = C, and f(n+1) = 2f(n)+|Z|+2.

Proposition 3.5 The constant C can be chosen depending only on Z such that
Cn ≤ f(n).

Proof: We proceed by induction on n. It is easy to see that EM(Z) cannot
consist entirely of ones or entirely of zeros. Thus we can handle the case n = 1
merely by taking the constant C sufficiently large.

Put N = f(n) and assume as an inductive hypothesis that every string τ of
length n occurs at least once in EM(Z)N . Fix any such τ and let σ be the prefix
of ZEM(Z) that ends at one of the occurrences of τ in EM(Z)N . By Proposition
3.4, both σ0 and σ1 occur in the initial segment of ZEM(Z) having length T|σ|+1.
Hence, both τ0 and τ1 occur in the initial segment of EM(Z) having length
T|σ|+1−|Z|. But |σ| ≤ N+|Z|, so by (3.2) T|σ|+1 ≤ 2|σ|+2 ≤ 2N+|Z|+2 = f(n+1).

Since τ was arbitrary, every string of length n + 1 occurs at least once in
the initial segment of EM(Z) of length f(n + 1), i.e., Cn+1 ≤ f(n + 1). This
completes the inductive step, and the proof.

Next, we show that Z is uniquely determined by EM(Z).

Theorem 3.3 Let Z1 and Z2 be binary strings. Then if EM(Z1) = Y =
EM(Z2), the strings Z1 and Z2 are equal.

Proof: Assume Z1 6= Z2. We may assume that |Z1| ≥ |Z2| and that Z1 is
not the empty string. Let X1 = Z1EM(Z1) and X2 = Z2EM(Z2).

Let σ be the head of Y of length k. Since Y is not periodic, the distance
d(k) between the first two occurrences of σ in Y tends to infinity as k tends to
infinity. Fix k with d(k) ≥ |Z1|+ 1.

The first matches of −Z1σ and Z1σ in X1 must follow one of the following
two patterns:

i
Z1σx . . . −Z1σx

′ . . . Z1σx
′

ii
Z1σxy . . . Z1σx

′ . . . −Z1σxy
′

See, e.g., Theorem 4.6 of [7] or Lemma 2 of [9]. One may check that these
results generalize to the seeded case provided all match lengths involved in the
arguments exceed the length of the seed. (In the language of [7], an excursion
begins in case (ii) at the middle sequence in the display, and ends at the last
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sequence. The key point here is that the match of −Z1σ occurs before the next
appearance of Z1σ.)

In case (i), the choice of k ensures that the string denoted −Z1σx
′ . . . Z1σx

′

lies entirely inside Y , i.e., does not overlap with the seed. Thus, in X2 we have

Z2σx . . . −Z1σx
′ . . . Z1σ

Since |Z1| ≥ |Z2| and Z1 and Z2 are not equal, there can be no other occurrence
of Z1σ in the range shown. But then the match of −Z1σ at the end would
produce a next digit of x rather than x′, a contradiction.

In case (ii), we replace σ with the next longer initial string σx. Then at the
next occurrence of Z1σx in X1 we are back in case (i). �

4 Double Helices

A given DeBruijn string X of order n induces a Hamiltonian circuit of the
DeBruijn graph Bn that begins at the node corresponding to the initial n-
string of X. For example, the order 3 string 0011101000 induces the circuit
001 → 011 → 111 → 110 → 101 → 010 → 100 → 000 → 001 of B3. If the
edges of such a circuit are removed from Bn, the remaining graph contains at
least 3 connected components, including the loops from the all zero n-string
back to itself, and from the all 1 n-string back to itself. For the order 3 example
just given, there is a single additional component consisting of the loop 001→
010→ 101→ 011→ 110→ 100→ 001.

In cases where there are exactly 3 connected components (i.e., the minimum
number possible,) we shall call the original DeBruijn string X a double helix.
The long cycle in the graph formed by removing the edges of the path of X from
the DeBruijn graph will be called the message loop of X, and the corresponding
string the message of X. We also call a DeBruijn cycle a double helix if the
associated DeBruijn string is a double helix.

The message of an order n double helix is not itself a DeBruijn string since
it does not include the all-zero and all-one strings, 0̄n and 1̄n. It does contain
every other binary string of length n. Such a string can be converted to a bona
fide DeBruijn string by inserting an extra 0 at the position of 0̄n−1 and an
extra 1 at the position of 1̄n−1. We shall call a binary string that contains every
string of length n exactly once, except for one or both of the all-zero and all-one
strings, a depleted DeBruijn string.

Every DeBruijn string of order 3 or less is a double helix, but this is not true
for higher orders. For example, 1111000010011010111 is a double helix of order
4, but the DeBruijn string 1111000011010010111 is not a double helix.

If a double helix Z of order n is used as a seed for either EM or EMn, then
it is nearly correct to say that the seeded sequence begins by extracting the
message of Z. More precisely, we have:

Theorem 4.1 Let Z be an order n double helix whose initial n−string τ is
neither the all-zero nor the all-one string. Let Y be the initial 2n − 1 string of
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either EMn(Z) or EM(Z). Then the path of τ−Y is the message loop of Z, and
ZY is a depleted DeBruijn string of order n+ 1.

Proof: The theorem is vacuous if n = 1 and is readily checked for n = 2, so
we may assume that n ≥ 3. Let σxy, where x and y are binary digits, be the
initial n+ 1 string of Z. Then σ is also the terminal n− 1 string of Z, and xy′

are the first two digits of Y . Now τ = σx lies on the message loop L of Z in Bn,
and σx→ −σxy

′ is an edge of this loop. By induction, each successive edge of
the path of ZY is an edge of L, until the entire loop shall have been traversed.
Completion of L starting from σx with a return to σx on the last step requires
2n−1 steps, since the path visits every n−string except 0̄n and 1̄n exactly once.

Every n+ 1 string except 0̄n+1, 1̄n+1 occurs exactly once in ZY . Therefore,
ZY is a depleted DeBruijn string of order n+ 1. �

The method of Theorem 4.1 produces depleted DeBruijn strings of a special
type: their first half is a DeBruijn string of the next lower order. They are not
themselves depleted double helices, in general.

Double helices do not appear to be particularly rare among DeBruijn strings.
For example, 4 of the 16 order 4 DeBruijn cycles are double helices, and 840 of
the 2048 order 5 DeBruijn cycles are double helices. We shall show there are
double helices of all orders by showing that all DeBruijn strings generated by
means of linear recurrences are double helices, but this only accounts for 5 of
the 840 double helices of order 5. It would be of interest to find other algorithms
that reliably generate double helices of all orders, as well as to count the exact
number occurring at each order.

Consider a linear recurrence of the form

ak = c1ak−1 + c2ak−2 + · · ·+ cnak−n, k = 0, 1, . . . , (4.1)

where all operations and elements are those of Z2, the field of integers modulo
2. If a set of n coefficients ci is given, as well as a choice of initial values
a−1, a−2, . . . a−n, then the recurrence determines a unique infinite sequence of
binary digits a0, a1, . . . Since there are 2n possible n−tuples of binary digits, the
sequence must eventually become periodic with period at most 2n. The maximal
period is, in fact, 2n − 1, since a sequence of n zero digits can only be followed
by zero digits.

Binary sequences produced by a linear recurrence that have maximal period
are called PN sequences in [4]. A full period of a PN sequence contains all binary
sequences of length n except for the all zero sequence. Inserting an extra zero
at the beginning of the unique sequence of n−1 zeros in such a cycle produces a
DeBruijn cycle. We shall call these cycles and their associated sequences linear
DeBruijn cycles and sequences.

Clearly a necessary condition for a PN sequence is that coefficient cn should
be non-zero. It is convenient to introduce an additional coefficient c0 = 1, and
to define the characteristic polynomial

f(x) =

n∑
j=0

cjx
j .
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It is shown in [4] that characteristic polynomials of PN sequences are necessarily
irreducible in the polynomial ring Z2[x], and that the period p of any sequence
generated by a linear recurrence, for which the characteristic polynomial is irre-
ducible, is determined as the smallest value of p such that the polynomial 1−xp
is divisible by the characteristic polynomial. Furthermore, PN sequences exist
for every order n. It therefore follows from our next result that double helices
exist for all orders n.

Theorem 4.2 Every linear DeBruijn sequence is a double helix.

Proof: Let an be a PN sequence determined by the recurrence (4.1) and
having characteristic function f(x). Let bn be the sequence determined by the
linear recurrence

bk = c1bk−1 + c2bk−2 + · · ·+ cnbk−n + 1, k = 0, 1, . . . , (4.2)

with initial condition b−1 = 1, b−2 = b−3 = · · · = b−n = 0. The paths in
Bn induced by the ak sequence and the bk sequence leave each vertex by the
opposite edge, so it suffices to show that the period of the latter sequence is
q = 2n − 1.

Let G(x) be the generating function of the bk sequence, i.e.,

G(x) =

∞∑
k=0

bkx
k.

Substituting for bk the expression on the right side of (4.2) and interchanging
orders of summation, we obtain

G(x) =
1

1− x
+

n∑
i=1

cix
i(b−ix

−i + · · ·+ b−1x
−1 +G(x)),

whence

G(x)f(x) =
1

1− x
+

1− f(x)

x
=

1 + xf(x) + f(x)

x(1− x)
.

(Recall that operations are done in Z2[x].) Now since f(0) = 1, the last written
numerator is divisible by x, i.e.

h(x) =
1 + xf(x) + f(x)

x
= f(x) +

n∑
i=1

cix
i−1 (4.3)

is a polynomial that also satisfies

G(x)(1− x)f(x) = h(x).

On the other hand, since bk has period q, we have

G(x) =
g(x)

1− xq
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for some polynomial g(x). Combining these results we have g(x)(1− x)f(x) =
h(x)(1−xq). Since f(x) is irreducible, it must divide either h(x) or 1−xq. But by
(4.3) the first possibility cannot occur, since then f would divide a polynomial
of lower degree. It follows that f divides 1 − xq, and hence q ≥ 2n − 1. But
since the bn sequence never visits the all one n-string, its period is exactly
2n − 1, as required. (Since a PN sequence does visit 1̄n, it is necessary that
c1 + c2 + · · · + cn = 0 to avoid getting trapped there. Thus the bn sequence
cannot visit 1̄n unless it starts there.) The path induced in Bn by the bn
sequence takes the form 0̄n−11 → · · · → 10̄n−1 → 0̄n → 0̄n−11. (2n − 1 steps.)
If the original PN sequence is converted to a DeBruijn sequence by inserting a
zero, then in the message loop the last two steps are replaced by the single step
10̄n−1 → 0̄n−11. Thus the message loop omits both 0̄n and 1̄n. �
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