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Abstract

We comment on divergent series whose terms can be grouped so as to produce an arbitrarily specified
sum.

1 Results

According to Riemann’s theorem on rearrangements, a conditionally convergent series can be rearranged to
have any sum whatever. This shows that the commutative law of addition fails to generalize to infinite sums
– only absolutely convergent series can be rearranged at will without affecting the sum.

The associative law, on the other hand, appears to have a satisfactory generalization: the terms of a
convergent infinite series can be grouped in an arbitrary way without affecting convergence or the sum.
Regrouping the terms only serves to extract a subsequence of the sequence of partial sums.

The author has often made these comments, or ones like them, in his calculus classes, unaware that the
comment about the associative law reveals a clear bias in favor of convergent series. Terms of divergent
series can often be grouped so as to produce convergent series. Take, for example, the series with terms
(−1)n, n = 0, 1, 2, . . . . Grouping the terms in pairs turns a divergent series into a convergent series.

Indeed, it is not uncommon for a divergent series to behave in a way that is analogous to the series
involved in Riemann’s theorem, but relative to grouping of terms rather than rearrangement. Let us say
that an infinite series is generative if its set of partial sums is dense in the set of real numbers. (Such series
are necessarily divergent.)

Lemma 1.1. Let sn be the n-th partial sum of a series
∑∞
j=1 bj for which we have that |bj | → 0 as j →∞,

and such that
lim sup
n→∞

sn = +∞ and lim inf
n→∞

sn = −∞.

Then
∑∞
j=1 bj is generative.

For the proof, given any α ∈ R, let T1 = inf{n : sn > α} and T2 = inf{n > T1 : sn < α}. The hypotheses
ensure that T1 and T2 are both well-defined and finite. Continue inductively to define a sequence of indices
in pairs: T2k+1 = inf{n > T2k : sn > α} and T2k+2 = inf{n > T2k+1 : sn < α}. Then we have sTn

→ α as
n→∞, since |bTn

| → 0 as n→∞.

Theorem 1.1. Any conditionally convergent series has a rearrangement that is generative.

To see this, produce a rearrangement that satisfies the hypotheses of Lemma 1.1 by proceeding as in
the usual proof of Riemann’s theorem: alternate longer and longer strings of positive terms with longer and
longer strings of negative terms, so as to exhaust all the terms. See, for example [3], pp. 76-7.

The result of Lemma 1.1 also holds if we assume only b+j → 0 or b−j → 0 as j →∞. One may proceed as
in the proof of Lemma 1.1, using either the odd indexed sTn or the even indexed sTn . It is not difficult to
produce examples showing that neither condition is necessary. On the other hand, we do have the following
result:
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Theorem 1.2. The terms of any generative series
∑∞
j=1 bj can be grouped so as to produce a new generative

series
∑∞
j=1 cj for which |cj | → 0 as j →∞.

To see this, fix a generative series
∑∞
j=1 aj for which we do have |aj | → 0 as j →∞, using, e.g., Theorem

1.1. Now, it holds that
∑∞
j=k bj is also generative for any given k, since translates of dense subsets of R are

dense. Using this observation, we may inductively define the cj as sums of blocks of terms of
∑∞
j=1 bj such

that |cj − aj | < 2−j . The desired result then follows from:

Lemma 1.2. If
∑∞
j=1 aj is generative and

∑∞
j=1 |aj − cj | <∞, then

∑∞
j=1 cj is generative.

For the proof, given α ∈ R and ε > 0, first find M such that
∑∞
j=M+1 |aj − cj | <

ε
2 . Since

∑∞
j=M+1 aj is

generative, a subsequence of its partial sums converges to α −
∑M
j=1 cj . In particular, there is N such that

|
∑N
j=M+1 aj − α+

∑M
j=1 cj | <

ε
2 . But then |

∑N
j=1 cj − α| < ε.

It is also easy to obtain generative series as random series. For example:

Theorem 1.3. Let Xn, n = 1, 2, . . . be independent symmetric random variables such that

∞∑
n=1

E(X2
n) =∞

and
∞∑
n=1

E|Xn|p <∞

for some p > 2. Then
∑∞
n=1Xn is generative with probability one.

This follows from the Kolmogorov Three Series Theorem. See, for example, [1], p. 114. (The convergent
series hypothesis can be replaced by any condition that ensures Xn → 0, a.s.)

More highly divergent examples of generative random series arise from neighborhood recurrent random
walks. Take for the Xn an i.i.d sequence whose distribution is non-lattice and satisfies the Weak Law of
Large Numbers. The resulting random series is almost surely generative by the Chung-Fuchs Theorem. See,
for example, section 3.2 of [2]. It would be of interest to find necessary and sufficient conditions for a series
of independent, but not identically distributed, random variables to be generative with probability one.
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