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Abstract

We examine critically the statement “ derivative measures slope of tangent line.”

1 Introduction

Most calculus textbooks stress the connection between derivatives and slopes of tangent lines, and in this
regard they seem to fall into two groups: those that offer calculation of tangent line slopes as an “application”
of the derivative (see, e.g., [1], pp. 31-32,) and those that define the concept of tangent line in terms of the
derivative (see, e.g., [3], p. 75.)

Calculation of slopes as an application only makes sense if there is a received notion of tangent line, e.g.,
from geometry. The geometric concept has certainly existed since Euclid, but it has been somewhat fluid
over time, and difficult to pin down in ancient sources. Both Euclid and Apollonius of Perga give detailed
constructions of tangent lines, Euclid in the case of circles (see Propositions 16 and 17 of Elements III), and
Apollonius for the conic sections (see Propositions 33 and 34 of Conics I.) Of course, neither author actually
uses the phrase “tangent line”. The word tangent is English, and derived from the Latin tangere, to touch.
Both ancient authors distinguish between lines that touch a curve and those that cut the curve. They also
note that lines touching a curve have the property that no other line can be placed between the touching
line and the curve. Using the derivative to define tangency, on the other hand, begs the question “what is
this new concept of tangency good for?” I offer the term osculating line as a replacement for tangent line
defined using the derivative, with little hope that it will be accepted.

In this paper we explore the connections between calculus and a concept of tangency strict enough to
cover what the ancient geometers had in mind, but lax enough to allow for examples that go beyond the
conic sections.

Throughout, we shall adopt the convention that, if we designate a point on a graph by a capital letter,
then the corresponding lower case letter is the x coordinate of the point. Each non-vertical line divides the
plane unambiguously into a region above the line and a region below it. More precisely, if L is an affine
linear function, then a point X(x, y) lies above L if and only if y ≥ L(x), and lies below it if y ≤ L(x). We
say a set of points (e.g., a graph) lies above (resp. below) L if and only if each point of the set lies above
(resp. below) L.

Let A be a point on the graph G of a function f . A non-vertical line L with equation y = f(a)+m(x−a)
is said to be a geometric tangent line to the graph of f at A (or at a) if the graph meets L only in the point
A, and G lies either above L or below L. In cases where there is no ambiguity, we denote the tangent line
at x = a by La, and we use this same symbol interchangeably for the affine linear function and its graph.
We shall denote by ma the slope of La. A function is a GT function if it has a unique geometric tangent at
each point of its graph.

If we dropped the requirement that the graph be on one side of L, attempting to emulate the simpler
definition of tangent that works for conic sections – a non-vertical line that intersects the graph in exactly
one point – we would severely restrict the class GT. For example, any line of negative slope meets the graph
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of the exponential function in exactly one point. Since many such lines pass through each point on the graph
of y = ex, this function would not belong to class GT for having too many “tangents”.

2 Tangent Lines without Calculus

If a function f is known to be GT a priori, (for example, if its graph is a conic section,) then the slopes of
tangent lines to the graph of f can often be found without calculus. For example, let m be the slope of the
tangent line to the graph of y = x2 at x = a. Since this function is GT, the equation

x2 = a2 +m(x− a)

has the unique solution x = a. This information alone is sufficient to determine m: If x 6= a, then

m =
x2 − a2

x− a
= x+ a.

If m had any value besides 2a, then x = m− a would give a second solution.
As a second example, consider the problem of finding the slope of the tangent line to y = 1/x at

x = a > 0. The graph is an hyperbola and has a unique geometric tangent at each point of its domain. Thus,
the equation

1

x
=

1

a
+m(x− a)

has the unique solution x = a, where m, as above, stands for the slope of the tangent line at x = a. If x 6= a
then

m =
1
x −

1
a

x− a
= − 1

ax

If m had any value besides − 1
a2 , then x = − 1

am would give a second solution.
Let us show that the function f(x) = |x|n is GT for each natural number n ≥ 2. For this, we recall

Bernoulli’s inequality,
(1 + y)n ≥ 1 + ny, n ∈ N, ny ≥ −1,

with strict inequality if n ≥ 2 and y 6= 0. This can be proved by induction on n. For another quick proof,
apply the AGM inequality to the set of n non-negative numbers {1, 1, . . . , 1, 1 + ny}. Taking y = x− 1 gives

xn ≥ 1 + n(x− 1), x ≥ 1− 1

n
.

For all other values of x the right-hand side is negative, so the inequality

|x|n ≥ 1 + n(x− 1)

holds for all x. If a > 0 we obtain, after replacing x by x/a that

|x|n ≥ an + nan−1(x− a),−∞ < x <∞

holds for any natural number n. Also, strict inequality holds when x 6= a. This shows that f has a geometric
tangent at each a > 0. By a symmetrical argument, the same is true for a < 0. The x-axis is clearly
a geometric tangent at the origin. Since the slope, na|a|n−2, of these geometric tangents is a continuous
function of a when n ≥ 2, the desired result follows from Theorem 3.2 below. (We note that this shows |x|n
is GT without using the derivative, and thus the usual elementary power rule of calculus can be derived, as
in the case n = 2, “without calculus”.)

As a final example, let us show that the exponential function is GT. Defining ex for irrational x is a
delicate matter if one proceeds from first principles, but it can all be done without using differentiation or
integration. Problem 6, p. 23 of [2] gives an outline of the steps required to define exponentials with real
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exponents and to establish their basic properties. The arguments use only algebra and the completeness of
the real number system. Similar arguments can be used to show that the exponential function is continuous.
The first step is to show that the sequence xn = (1+1/n)n is increasing in n. Bernoulli’s inequality is handy
once again:

xn+1

xn
=

(
1− 1

n2 + 2n+ 1

)n
n+ 2

n+ 1
≥

(
1− n

n2 + 2n+ 1

)
n+ 2

n+ 1
,

and a little algebra shows the last expression is greater than one. Next, one shows that the sequence xn is
bounded above. One way to do this is to expand (1 + 1/n)n and use the easy estimates(

n

k

)
1

nk
≤ 1

k!
, and

n∑
k=0

1

k!
< 3.

It follows from completeness that xn has a limit, and we define this limit to be the value of e, Euler’s
constant. Next, for x ∈ Q+, x = k/m, we have that

lim
n→∞

(
1 +

x

nk

)nk
= lim

n→∞

(
1 +

1

nm

)nmx

= ex.

. By Bernoulli’s inequality (again!), we have(
1 +

x

n

)n
≥ 1 + x, x ≥ −1,

and therefore
ex ≥ 1 + x, x > −1, x ∈ Q.

Since ex is positive for all rational x, the condition x > −1 can be dropped, and then the inequality persists
for all real numbers x since both sides are continuous functions of x. Moreover, strict inequality holds for
all x 6= 0. (One may check, e.g., that (1 + x/n)n increases strictly in n for every x 6= 0.) Finally, for any real
numbers a and x, we have

ex = eaex−a ≥ ea(1 + (x− a)) = ea + ea(x− a),

with strict inequality unless x = a. This shows that the exponential function has a geometric tangent at
each point A on its graph, with slope equal to ea. Since the function giving the slope is continuous, it follows
from Theorem 3.2 below that the exponential function is GT.

3 Which Functions are GT?

In this section we determine exactly which functions are GT, and provide a useful criterion for functions
with geometric tangents to have unique geometric tangents.

Theorem 3.1. A function f is GT if and only if it has a continuous, strictly monotone derivative.

Suppose f has geometric tangents but is not yet assumed GT. Suppose A and B are distinct points on
the graph, G, of f . We shall argue first that G must lie on the same side of La and Lb. Suppose in fact
it were the case that G is above La and below Lb. If ma 6= mb then La and Lb intersect in a point C.
Since G is below Lb and C is on Lb, we have f(c) ≤ f(b) + mb(c − b) = Lb(c), and since G is above La

and C is also on La, we have La(c) = f(a) + ma(c − a) ≤ f(c). Since C lies on both lines, we have indeed
Lb(c) = La(c) = f(c). Since C must be distinct from at least one of A and B, it follows that G meets at
least one of the lines in more than one point, contrary to hypothesis.

There remains the possibility that La and Lb are parallel, with G lying entirely within the strip between
them. Assume for definiteness that a < b and Lb is above La. (Other cases are handled similarly.) In this
case, if we pick any a < c < b, the same argument shows that mc = ma = mb: since G lies on one side of Lc
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or the other, and on opposite sides of La and Lb, we may pair one of the two lines with Lc in the argument
given. Since point A is below Lc, all of G is below Lc. Since point B is above Lc, all of G is above Lc. This
is only possible if the three lines coincide, and this is not possible, since A and B are distinct.

If A = B and we had two distinct tangents at A, L1 and L2, then neither lies on one side of the other.
No point of G, apart from A itself, can lie between the two lines, since G must lie on one side of each. Thus
G lies on the same side of L1 and L2.

We have shown, therefore, that G is either above all of its tangent lines, or below all of its tangent lines.
Suppose it is the former. We shall show, in this case, that the mapping b → mb is strictly increasing. Let
a < b. Since G lies above Lb we have

0 ≤ f(x)− f(b)−mb(x− b),−∞ < x <∞

Similarly,
0 ≤ f(x)− f(a)−ma(x− a),−∞ < x <∞

In particular, we have
0 < f(a)− f(b)−mb(a− b),

and,
0 < f(b)− f(a)−ma(b− a).

Adding the two inequalities gives (mb −ma)(b− a) > 0, which shows that mb increases strictly in b.
From now on, assume f to be GT, with G above the (unique) tangent at each point. In this case the

function mb must be continuous in b. If we had mb− = α < mb+ = β, then it is straightforward to show
that any line y = f(b) + m(x − b) with α < m < β can only intersect G at B, and could serve equally as
tangent line at B.

The rest follows by standard arguments involving convexity. We have that G is the envelope of the graphs
of all tangent lines, i.e,

f(x) = max{Lb(x) : −∞ < b <∞}

. The region lying on and above G is thus the intersection of half-planes, and therefore a convex set. From
this it follows easily that G lies below its secant lines and, if a < b < c,

ma <
f(b)− f(a)

b− a
<
f(c)− f(a)

c− a
<
f(c)− f(b)

c− b
< mc.

From this we obtain that f is differentiable at b with mb = f ′(b) by letting a increase to b and c decrease to
b.

Conversely, suppose a function f has a strictly increasing derivative. Then by the Mean Value Theorem
we have

f(x) > f(b) + f ′(b)(x− b), x 6= b,

and so the line y = f(b) + f ′(b)(x− b) is a geometric tangent line at B. For the uniqueness, suppose we had

f(x) > f(b) +m(x− b), x 6= b

Letting x decrease to b gives the inequality f ′(b) ≥ m. Letting x increase to b gives the inequality f ′(b) ≤ m.
This establishes uniqueness of the geometric tangent line at B and completes the proof.

Let f be a function that has at least one geometric tangent at each point of its graph. Let g be a function
such that g(x) is the slope of a geometric tangent at each X on the graph of f . We call such a function g a
version of the derivative of f.

Theorem 3.2. Let f have a geometric tangent at each point on its graph. If there is a continuous version
of the derivative of f , then f is GT.
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The first part of the proof of Theorem 3.1 shows that any version of the derivative is strictly monotone,
say, increasing. Let g be a continuous version. For a given x0, define a function h by h(x0) = m, where m
is the slope of some geometric tangent at x0, and h(x) = g(x) for all x 6= x0. Then h is also a version of the
derivative, so h is increasing. Thus m < h(x) = g(x) for every x > x0. Since g is continuous at x0, we have
m ≤ g(x0) by letting x decrease to x0. Similarly, m ≥ g(x0). This shows that f has a unique geometric
tangent at each x0 and is therefore a GT function.
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