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Abstract

We show that when birthdays in a group of people are suitably positively correlated, it is more likely
that there will be a birthday in common than when birthdays are independent.

1 Introduction

According to the solution of the classical Birthday Problem, in any random group of 23 or more people the
odds are better than even that some pair of people will share a common birthday.

To make a theorem out of this, we must be more precise about assumptions. Typically, it is assumed
that birthdays of individuals are independent of each other and equally likely to occur on any of the 365 days
of the year. The latter assumption of uniform distribution, however, is quite unnecessary for the desired
conclusion. As has been noted by several authors, non-uniform distribution of birthdays only makes it more
likely that some birthday will be represented more than once in a group. See, for example, [2], where this
result is derived from an inequality about certain multi-linear averages.

What about the assumption of independence? If some degree of positive correlation held among indi-
vidual’s birthdays, then it seems likely that there would be an enhanced probability of having a common
birthday in a group of given size. The birthdays of a group of 23 strangers who happen to attend one of
many breakout sessions at a typical large convention might reasonably be modelled as independent. On
the other hand, if the convention were the annual meeting of the Society of Identical and Fraternal Twins
(SIFT)1, then their birthdays would be positively correlated, and as soon as both members of a set of twins
decide to attend the same session, concordance of birthdays is guaranteed.

An immediate problem is how to define a suitable notion of positive correlation? For a pair X and Y
of real-valued random variables, positive correlation means that we have E(XY ) ≥ E(X)E(Y ). While we
can certainly assign numbers to days of the year, this seems somewhat unnatural and arbitrary. Moreover,
it is likely that one would need to assume a notion of positive correlation that applies not only to pairs of
random variables, but to larger groupings as well.

An obvious candidate for a suitable notion of positive correlation is that of association of random variables
introduced in [1]. Association imposes a strong form of positive correlation among a set of random variables
and each of its subsets, and it is most naturally formulated for random variables taking values in an abstract
totally ordered set. It would be quite reasonable to conjecture that concordance of birthdays is at least as
likely among a group of associated birthdays as among a group of independent birthdays having the same
marginal distributions.

Perhaps surprisingly, it turns out that association alone is not sufficient for this conclusion, even for
pairs of birthdays. A more uniform kind of association appears to be required. We formulate and prove a
theorem to this effect in section 3 of this paper, after having reviewed some relevant facts about association
in the following section. Section 4 is devoted to illustrative examples. The last section discusses some open
problems.

1A fictional organization, as far as I know
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In order to avoid technicalities, we assume throughout that all random variables take values in a given
finite totally ordered set S.

2 Associated Random Variables

Let X1, X2, . . . , XN be a collection of S-valued random variables defined on a common probability space.
The collection is said to be associated if, given any pair of functions F,G : SN → R which are non-decreasing
in each variable, we have

EF (X1, . . . , XN )G(X1, . . . , XN ) ≥ EF (X1, . . . , XN )EG(X1, . . . , XN ).

This definition was introduced in [1], and that reference should be consulted for the facts cited in this section.
It is true, but not trivial, that a collection consisting of a single random variable is associated. This

follows from a classical inequality due to Chebyshev. By successive conditioning, it then follows that families
consisting of independent random variables are associated. Since f(x) = F (x, x) and g(x) = G(x, x) are
non-decreasing whenever F and G are non-decreasing in each variable, it follows that a family X,X, where
X is any random variable, is associated. The variables in each of these cases are positively correlated or,
at worst, uncorrelated; indeed, association in general may be viewed as a strong form of positive correlation
amongst the variables.

An attempt to verify that a given collection is associated on the basis of the definition is unlikely to
succeed except in the very simplest examples. The task is eased somewhat by the observation that it suffices
to consider Boolean functions F and G, but even if the random variables are also Boolean, the number of
cases that must be checked grows very rapidly with N . For example, there are 20 distinct non-decreasing
Boolean functions of three Boolean variables, and so 400 different pairs of such functions must be considered
to fully check the definition. (The number of monotone Boolean functions is counted by a sequence indexed
by N known as the Dedekind sequence.)

Let T be another totally ordered set and Fi : SN → T, i = 1, 2, . . .M, be functions that are each
non-decreasing in each variable. Then if X1, X2, . . . , XN are associated with values in S, the variables
Yi = Fi(X1, X2, . . . , XN ), i = 1, 2, . . . ,M are associated with values in T . Thus, an effective way to produce
examples is to start with an independent collection and apply functions that are non-decreasing in each
variable.

Let b1, b2, . . . , bN be elements of S. Let F (x1) be the function that equals 1 if x1 ≥ b1 and zero other-
wise, and let G(x2, . . . , xN ) be the function that equals 1 if all of the xi are greater than or equal to the
corresponding bi and zero otherwise. Then both F and G are non-decreasing in each variable, hence

EF (X1)G(X2, . . . , XN ) ≥ EF (X1)EG(X2, . . . , XN ).

Iterating this, we find that

P (X1 ≥ b1, X2 ≥ b2, . . . , XN ≥ bN ) ≥ P (X1 ≥ b1)P (X2 ≥ b2) . . . , P (XN ≥ bN ).

One should beware that some natural operations do not preserve association. For example, mixtures of
associated sequences are not necessarily associated, and random samples taken from associated collections
are not necessarily associated, even if the sampling protocol is independent of the collection.

3 Main Results

Given a collection X1, . . . , XN of random variables defined on a common probability space, we denote by Fî

the sigma field generated by all variables except Xi. We say the collection is affiliated if and only if, for any
subset A of S and index i, we have

(3.1) P (Xi /∈ A|Fî) ≤ P (Xi /∈ A) on the event
⋃
j 6=i

{Xj ∈ A}.
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Stated informally, the variables “want” to belong to sets the other variables belong to.
Clearly, a single random variable is affiliated. The following properties of affiliation are useful in producing

examples:

a. A pair X,X is affiliated, where X is any random variable.

b. A non-random collection is affiliated.

c. Independent affiliated collections can be merged, and the resulting collection is affiliated.

d. A sample taken from an affiliated collection is affiliated. The sampling protocol is irrelevant, so long
as it is non-random. In particular, a sub-collection of an affiliated collection is affiliated.

The first 3 statements are obvious. To show (d), let X1, X2, . . . , XN be affiliated, and let Yi = Xj(i), i =
1, 2, . . . ,M be the sampled variables. Let A be a subset of S and assume at least one of b2, b3, . . . bM belongs
to A. Then

P (Y1 /∈ A, Y2 = b2, . . . YM = bM ) = P (Xj(1) /∈ A,Xj(2) = b2, . . . , Xj(M) = bM ).

If j(1) is among the j(2), . . . , j(M) and the corresponding bj(1) belongs to A, then the last expression
is zero, so we may assume this is not the case. If j(1) does not belong to j(2), . . . , j(M) then the event
{Xj(2) = b2, . . . , Xj(M) = bM} belongs to the sigma algebra generated by {Xk : k 6= j(1)}, and the conditional
probability of the event {Xj(1) /∈ A} is bounded above by its unconditional probability, since at least one
of the bj belongs to A. In the remaining case where bj(1) = b does not belong to A we obtain P (Xj(1) /∈
{b}c) ≤ P (Xj(1) /∈ A) as an upper bound.

The birthdays of people attending the SIFT convention can be modeled as an affiliated sequence: if the
equal pairs of birthdays of twins attending the conference are independent of each other, then the collection
of all birthdays at the conference is affiliated by (a) and (c ).

Theorem 3.1. Let X1, X2, . . . , XN be affiliated random variables and Y1, Y2, . . . , YN be independent random
variables such that Xi has the same distribution as Yi for i = 1, 2, . . . , N. Then

P (X1, X2, . . . , XN are distinct ) ≤ P (Y1, Y2, . . . , YN are distinct ).

Let A be a given subset of S having cardinality N − 1. Then using (3.1) we have

P (XN /∈ A|{X1, X2, . . . XN−1} = A)P ({X1, X2, . . . , XN−1} = A) ≤ P (YN /∈ A)P ({X1, X2, . . . , XN−1} = A).

Summing these inequalities over all choices of A produces

P (X1, X2, . . . , XN are distinct ) ≤ P (X1, X2, . . . , XN−2, YN , XN−1 are distinct ).

By (c) and (d), X1, X2, . . . , XN−1, YN , XN−1 is affiliated. Thus, we may repeat the argument with XN−1
playing the role of XN , etc.

If we also assume the variables in the affiliated collection are identically distributed, then we may combine
the last theorem with the results of [2] to obtain an extension of the Birthday Problem.

Theorem 3.2. Let X1, X2, . . . , XN be affiliated and identically distributed random variables with values in
a set of cardinality K, with K ≥ N . Then

P (X1, X2, . . . , XN are not distinct ) ≥ 1− (K − 1)(K − 2) . . . (K −N + 1)

KN−1 .

These theorems do not apply directly to the SIFT conference, since the hypotheses are not satisfied: the
people attending a given session are a random sample of the people at the conference, and we have no result
that says a random sample from an affiliated collection is affiliated. On the other hand, the conclusions of
both theorems do apply, since we can condition on the sample chosen on both sides.
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4 Examples

We provide an example of a pair of random variables that is associated but such that the result of Theorem
3.1 does not hold. This collection is therefore associated but not affiliated.

The joint distribution of (X,Y ) is given by the following table, where for now we only assume p is chosen
so that 0 < p < 1 :

probability X Y
(1− p)2 0 0
p(1− p) 1 0
p 2 1

The pair (X,Y ) is associated since it has the same joint distribution as (Y + Y ∨W,Y ), where Y,W are
i.i.d.

Now P (X 6= Y ) = p(2−p), while if U, V are independent, with U equal in distribution to X and V equal
in distribution to Y , then P (U 6= V ) = p(3 − 4p + 2p2). Thus, when 1

2 < p < 1, the independent variables
have a smaller probability of being distinct than the dependent ones, in contrast to the result of Theorem
3.1. Thus, under any such choice of p, the pair (X,Y ) is associated, but not affiliated.

In the following example, X and Y are identically distributed, and the pair is affiliated (and associated)
if and only if 0 ≤ p ≤ 4

9 .

probability X Y
p 0 0
p/2 0 1
p/2 1 0
1− 2p 1 1

A sufficient condition for a pair X,Y to be affiliated is that it should be associated under every total
ordering of S. To see this, let A be a subset of S. Given any element a in A we may choose a total order of
S so that a is minimal and all elements of Ac are larger than all elements of A. The function

F (x, y) = 1Ac(x)1{a}(y)

is then non-decreasing in x and non-increasing in y, hence by association we have

P (X /∈ A, Y = a) = EF (X,Y ) ≤ P (X /∈ A)P (Y = a).

This implies that
P (X /∈ A|σ(Y )) ≤ P (X /∈ A) on {Y ∈ A},

hence the pair X,Y is affiliated.
Boolean associated pairs are automatically affiliated. It is shown in [1] that a Boolean pair X,Y is

associated if and only if 1 −X, 1 − Y is associated. Since a 2 element set has only 2 possible total orders,
the desired result then follows from the previous paragraph.

5 Discussion

We cannot pretend to be very happy with the results of section 3.1. Condition (3.1) seems to be much too
strong, and it is not clear there are any interesting examples that satisfy it other than those that can be
obtained from constant sequences and independent sequences using the constructions indicated above.

A number of open questions remain. We have been unable to find an identically distributed associated
collection that does not satisfy the birthday inequality of Theorem 3.2. Does any such collection exist? (The
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first example in section 4 shows that we can have a non-identically distributed associated pair for which the
inequality of Theorem 3.1 fails.) We also showed in section 4 that an associated Boolean pair is necessarily
affiliated. Does this extend to larger collections?
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