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Abstract

Exercise solutions and other miscellaneous results about the Thue-Morse sequence and related mat-
ters.

1 Introduction

The Thue-Morse sequence is an infinite sequence of binary digits that contains no overlapping substrings.
For example, in the sequence that begins 0110110111... the 4th digit is shared between two consecutive
instances of 0110 - it is an example of an overlap. In general, a sequence contains an overlap if and only if it
contains a substring of the form avava, where a is either a 0 or 1 digit, and v is a finite string of digits. See,
e.g., Lemma 2.1.1 of [1].

A sequence with these properties was first constructed by Axel Thue in 1906. (Thue published a related
paper with further results in 1912.)

Thue’s main use for his sequence was as a tool for constructing an example of an infinite word on 3
letters (a, b, and c, for example) that contains no square factors, i.e. substrings of the form XX, where X is
a finite string of letters. It is easily seen to be impossible to avoid squares in long words of 2 letters. The
only square-free words on the two letters a and b are a, ab, aba, b, ba, and bab.

While it necessarily cannot avoid squares, Thue’s infinite word on 2 letters does successfully avoid overlaps,
which can be viewed as more intimate forms of contact between substrings than mere adjacency (as in
squares.) It should be noted that Thue’s word contains no cubes - substrings of the form XXX - since these
entail overlaps.

There are by now many known methods for constructing the Thue-Morse sequence t. For example,
consider the substitution µ, defined on the set of all finite non-empty sequences formed using the letters a
and b, that replaces each a by ab, and each b by ba. Thus, e.g., µ(abba) = µ3(a) = abbabaab. The successive
finite strings obtained by iterating µ applied to the letter a give ever longer finite prefixes of t. The resulting
infinite word starts out

t = abbabaabbaababbabaababbaabbabaabbaababbaabbabaababbabaabbaababbabaababbaabbab . . .

The terms of the sequence have a strange, whipsaw-like regularity that never quite settles into a truly
repetitive pattern. Rather, it has a fractal quality, repeating blocks and their mirror images on ever larger
scales of length. Thus, it provides a simple model of chaotic behavior, and in this context it was rediscovered
by Marston Morse in a 1921 study of chaotic behavior in certain dynamical systems.

Thue’s square free word m on 3 letters starts out

m = abcacbabcbacabcacbacabcbabcacbabcbacabcbabcacbacabcacbabcbacabcacbacabcbab . . .

A construction of this sequence based on t is given on p. 26 of [1]. See the solution of Exercise 2.3.2 below
for an alternative construction.

(Unless otherwise stated, all exercises and results are from [1].)
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2 Exercise 2.2.1 Solution

The purpose of this exercise is to prove that µ is essentially the only morphism that fixes t. More precisely,
if ν : {a, b}∗ → {a, b}∗ is a morphism such that ν(t) = t, then ν = µn for some natural number n

The exercise suggests first proving the following result, of some independent interest, which characterizes
the form of square factors of t: If wuu is a nonempty prefix of t, then either |u| = 2k or |u| = 3(2k), and, in
either case, |w| is a multiple of 2k.

Let S = {ab, ba}∗. We shall use the result of Lemma 2.2.5, which says that if x, y ∈ {a, b}, and both v
and xvy belong to S, then we cannot have x = y. In this connection, it is useful to note that if wu is a prefix
of t and |w| is even, then w ∈ S. If also u is even, then u ∈ S.

Suppose wuu is a prefix of t and both |w| and |u| are even. Then we have wuu = µ(rss) for some
r, s ∈ {a, b}∗. By repeated application of this observation we may suppose that at least one of |w| and |u| is
odd. Let us suppose that |w| is odd, say w = vb with v ∈ S. Then u must begin with a, since bb /∈ S. We
distinguish two subcases depending on whether |u| is even or odd.

Case |u| even: Suppose u begins with ab, say u = abz. If z is empty then t has a prefix of the form
vbabab which contains an overlap. (Note that both sequences baba and abab do occur in t: baba starting
at the 3rd place, and abab at the 11th place of t.) On the other hand if z is nonempty, then z must end in
b since that character plus the following first a of the second u must belong to S. Thus, let z = yb. Then
t has the prefix vbabybabyb. But this contains the overlap b(aby)b(aby)b. If, on the other hand, u = aaz
with z nonempty, then z must still have the form yb (for an even simpler reason - we cannot have a cube
aaa.) But then the prefix vbaaybaayb also contains an overlap: b(aay)b(aay)b.

Case |u| odd: We may assume |u| > 1. Then u has the form abz. (aaz is impossible because the second
u begins at an even position and must start with an element of S.) Since |z| ≥ 1 it has the form z = ya
or z = yb. If y is empty we have the example abaaba, occurring at the 16th place of t. (The example
babbab occurs at the 12th place. These are the only possibilities with |u| = 3. For example, aabaab cannot
occur because the preceding letter would either produce the cube aaa, or the overlap baabaab.) The case of
nonempty y cannot occur. First suppose z = yb. Then we have a prefix vbabybabyb which has the overlap
b(aby)b(aby)b. On the other hand, if z = ya, then we have a prefix vbabyaabya. But y must start with an
a since by begins with an element of S. If y starts ab then we have the overlapping factor, babab. If y starts
aax then we have a prefix vbabaaxaabaaxa. Note that both |y| and |x| are even. It follows that both axa
and baaxaab belong to S. But this contradicts Lemma 2.2.5. In sum, when both |w| and |u| are odd, only
|u| = 1 and |u| = 3 can occur.

Finally, we must consider the case |w| even and |u| odd. Clearly we cannot have |u| = 1 since neither
aa nor bb belongs to S, So suppose |u| ≥ 3. In this case uu belongs to S, so we way assume without loss of
generality that u = abz. z must end in b since, combined with the first a of the second u, the two must be
an element of S. Thus, u = abyb, and we have a prefix wabybabyb. But then both y and byb belong to S,
and this again contradicts lemma 2.2.5.

Suppose ν is a morphism that fixes t. It follows from the foregoing that for some n ≥ 0 and prefix tk of
t having odd length, we must have one of the following: ν(a)ν(b)ν(b) = µn(tkuu) with u = a, b, aba, or bab.

We shall use the following simple observation: if µn(tk) = µn(s), then s = tk. (This follows since
µn(a) 6= µn(b), but the two have equal length.)

Suppose u = b so that ν(abba) = µn(tkbbtk). Then ν(abba) is a prefix of t having length 2n(2k + 2), so
that ν(abba) = µn(t2k+2). It follows that t2k+2 = tkbbtk. If k ≥ 3 then tkbbabb is a prefix of t, hence tkbba
belongs to S since it has even length. But then bb also belongs to S, and this is a contradiction. It follows
that k = 1, i.e. ν(a) = µn(a) and ν(b) = µn(b), hence ν = µn.

The other cases are similar: If u = a we conclude that t2k+2 = tkaatk. This is impossible even for k = 1,
since it produces the cube factor aaa. If u = bab we have t2k+6 = tkbabbabtk. If k ≥ 3 then we would
have an overlapping factor babab. Finally, if u = aba then t2k+6 = tkabaabatk. If k ≥ 3 then we have the
overlapping factor baabaab.
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3 Exercise 2.2.3 Solution

The purpose of the exercise is to show that there exist uncountably many infinite binary sequences that
have no overlapping factors. (It is easy to show that there are at least countably many such sequences by
removing ever longer prefixes from t.) If s has no overlapping factors then we might try to produce a new
example by adding a letter at the beginning. This will succeed unless it happens that s has some prefix that
is a square. If s has prefix vava then as begins with the overlap avava. In this connection, the following
lemma will be useful:

Lemma 3.1. If s has no overlapping factors and µ(s) has a square prefix, then s itself has a square prefix.

Proof. Suppose µ(s) = xaxay. Then µ(bs) = baxaxay has an overlapping factor. By Lemma 2.2.6, bs
must have an overlapping factor, and by hypothesis this factor must be a prefix. Thus we may suppose
bs = bvbvbw. Cancelling b we see that s has the square prefix vbvb.

Next, we shall prove the following pair of statements by induction on n:

(3.1) aµn(b) has no overlaps and no prefix vbvb

(3.2) bµn(b) has no overlaps and no prefix vava

Both statements are obvious for n = 0. Suppose for a positive n we had aµn(b) = aubauby. Then
baµn(b) = µ(b)µn(b) = µ(bµn−1(b)) has an overlap at the beginning, but this is impossible by Lemma 2.2.6
and the inductive hypothesis. A similar argument shows that bµnb can have no prefix of the form vava.
Repeated use of Lemmas 3.1 and 2.2.6 shows that µn(b) can have no square prefix at all, and thus both
sequences aµn(b) and bµn(b) have no overlapping factors.

Let n1 be an odd natural number and nj − nj−1, j ≥ 2 be odd numbers. We shall next prove that

(3.3) aµn1(b)µn2(b) . . . µnk(b) has no overlaps and no prefix vbvb,

and,

(3.4) bµn1(b)µn2(b) . . . µnk(b) has no overlaps and no prefix vava.

The proof is by induction on k, the case k = 1 having been subsumed in the proof of (3.1) and (3.2).
If bµn1(b)µn2(b) . . . µnk(b) had a prefix vava then abµn1(b)µn2(b) . . . µnk(b) = µ(aµn1−1(b)µn2−1(b) . . . µnk−1(b))

begins with the overlap avava. Thus aµn1−1(b)µn2−1(b) . . . µnk−1(b) has an overlap, and it follows from the
inductive hypothesis that this must begin at the initial a. (If it began later in the sequence, we could factor
at least µn1−1 and apply the inductive hypothesis to its argument.)

Thus µn1−1(b)µn2−1(b) . . . µnk−1(b) has a prefix uaua. But

µn1−1(b)µn2−1(b) . . . µnk−1(b) = µn1−1(bµn2−n1(b) . . . µnk−n1(b)).

Since s = bµn2−n1(b) . . . µnk−n1(b) has no overlap, by inductive hypothesis and Lemma 3.1, s must have a
square prefix vv with µn1−1(v) = ua. Also, by inductive hypothesis, v must end in b. But this is impossible
when n1 − 1 is even. This completes the inductive step for (3.4). The argument is similar for obtaining the
inductive step of (3.3).

Finally, we shall show that the strings in (3.4) are distinct for distinct sequences n1, n2, . . . . This suffices
to complete the proof, since it is easy to show that the set of all such sequences is uncountable. By considering
the first position at which two such sequences differ, it suffices to show that µi(b)b cannot be a prefix of
µj(b) if j > i. (Note that the factor that would follow µi(b) begins with the letter b.) Let k = j − i− 1 ≥ 0.
We have µj(b) = µi(baµk(b)) = µi(b)µi(aµk(b)), showing that µi(b) is followed in µj(b) by the letter a.

We remark that the set abµn1(b)µn2(b) . . . is also an uncountable set of words without overlapping factors.
Write abµn1(b) · · · = µ(aµn1−1(b) . . . ) with n1 − 1 odd, and use the result of (3.3) and Lemma 2.2.6. This
formulation is not necessary for the current problem, but is useful in Problem 2.3.6.
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4 Exercise 2.3.6 Solution

The problem is to show that the set of all infinite square free words on three letters (a,b,c) is uncountable.
It suffices to use Theorem 2.3.1 with the sequences constructed at the end of the solution 2.2.3. Any such
sequence a starts with abb and can be uniquely parsed into tokens a, ab, or abb, using the obvious greedy
algorithm. Moreover, exactly as in the text, there is a unique word b such that δ(b) = a, where δ is the
substitution δ(c) = a, δ(b) = ab, δ(a) = abb. Then b is square free by Theorem 2.3.1. The cardinality of the
set of b so obtained is the same as the cardinality of the sequences a, i.e., uncountable.

5 Exercise 2.3.2 Solution

This exercise tasks the reader to provide the omitted proof of Proposition 2.3.2. That proposition indicates
a somewhat more satisfying construction of the square-free word m than the one based on t: Define a
substitution φ on the alphabet {a, b, c} by φ(a) = abc, φ(b) = ac, and φ(c) = b. The infinite word m is then
obtained by iterating φ on a, just as t was obtained by iterating µ on a.

For the proof, let δ be the substitution introduced above in the solution of Exercise 2.3.6. One checks
that δ ◦ φ = µ ◦ δ on {a, b, c}. Therefore δ ◦ φω(a) = µω(δ(a)) = µω(abb) = t. Thus b = φω(a) satisfies
δ(b) = t. But, as shown in the middle of page 26, the word with this property is unique, and since m is such
a word, we have b = m.
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